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Thomson scattering from ion acoustic waves in laser plasmas
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This work is concerned with the description of ion acoustic fluctuations in electron-ion plasmas relevant to
laser-plasma interaction experiments. A nonlocal closure to the linearized moment equations for the fluctuating
hydrodynamic quantities is introduced. These equations are used to construct practical expressions for the
dynamical form factor and Thomson scattering cross section, which are valid in the entire region of particle
collisionality in plasmas with highZ and largeZTe /Ti . @S1063-651X~98!05403-8#

PACS number~s!: 52.25.Gj, 52.25.Fi, 52.35.Dm
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I. INTRODUCTION

The creation of hot dense plasmas with lasers is an es
tial feature of x-ray lasing schemes as well as inertial fus
experiments. In such plasmas Thomson scattering is us
for both characterizations, which is necessary in order
calibrate and verify computer simulations and also in
investigation of basic plasma physics. It has recently beco
possible for Thomson scattering to measure ion acou
wave features such as damping and phase velocity in l
plasmas, which allows ionization and temperature to be t
resolved@1,2#. Advances in the understanding of scatteri
instabilities have been made possible by Thomson scatte
from enhanced levels of plasma fluctuations~see, e.g.,@3,4#!.
Furthermore, Thomson scattering has been used as a too
understanding basic plasma physics close to thermodyna
equilibrium. For example, both branches of the ion acou
dispersion relation have been directly observed in a pla
with two ion species@5# and the ion plasma wave dispersio
relation has been verified@6#. The utility of Thomson scat-
tering, of which the above are examples, can be further
hanced when used in conjunction with better theoret
models.

The cross section for the Thomson scattering of laser l
from plasmas is determined byS(k,v), the Fourier trans-
form of the electron density autocorrelation function~from
here on referred to as the dynamic form factor!. This is well
known in both the strongly collisional and collsionless limi
while the wide intermediate~weakly collisional! region of
importance to laser plasmas has not yet been addressed
paper sets out to give a self-consistent approach to the p
lem. We will evaluate electron density-density correlati
functions by following the theory of fluctuations as describ
by Oberman and Williams and the results contained the
@7#. One of the key results of this theory is the demonstrat
that the two-point correlation function of the phase-spa
fluctuation ^d f a(xW ,vW ,t)d f b(xW0 ,vW 0 ,t0)& obeys a linearized
version of the kinetic equation for the one-particle distrib
tion function f a(xW ,vW ,t) in the xW ,vW ,t variables. This is a ki-
netic version of Onsager’s ‘‘regression of fluctuations’’@8#
whereby fluctuations evolve from their initial values acco
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ing to the equations of linearized hydrodynamics. Indee
can be shown that this kinetic description reduces to Ons
er’s prescription in the hydrodynamic regime (l a /LH

!1, natH@1) by a modification of the Chapman-Ensko
method ~see, e.g.,@9#!. Here l a and na are the collisional
mean free path and collision frequency of speciesa respec-
tively, and LH ,tH are the length and times scales for t
evolution of the fluctuating hydrodynamic variables. T
derivation of Onsager’s method from kinetic theory can
used to justify the validity of the method not only for the
modynamic equilibrium, but also for fluctuations about som
nonequilibrium background state that may, for example, s
port a heat flux. We will further extend the method’s validi
outside the usual hydrodynamic regime by making use
hydrodynamiclike models that capture kinetic effects.

Hydrodynamiclike theories that model kinetic effec
have generated much interest recently. This is due to
need to describe plasmas with strong gradients that vio
the usual ordering necessary for the applicability of class
transport theory@10#. These nonlocal models incorporate fr
quency and wave-vector-dependent transport coefficients
sulting in the response of the ‘‘fluxes’’ to the thermodynam
‘‘forces’’ becoming delocalized in both space and time. B
chenkov et al. @11,12# have developed nonlocal hydrody
namic models that are relevant for plasmas characterize
large Z,ZTe /Ti and slow processes that evolve on the i
acoustic time scale. In this paper these hydrodynamic mo
are used to construct useful expressions for the dyna
form factorS(k,v) that are valid outside the usual domain
validity for classical transport theory. In particular, they a
accurate in the weakly collisional region that is of impo
tance to laser plasmas. In the strongly collisional limit o
expressions agree with the usual two-fluid results of Brag
skii @10#, while in the collisionless limit we connect with th
results derived from the Vlasov equation~within the approxi-
mations relevant to each case!.

We will analyze in detail two cases of our general expr
sion for the dynamic form factorS(k,v): the ion weakly
collisional case where ion viscosity~modified by finite fre-
quency! is important together with collisionless electro
Landau damping and the weakly collisional electron case
which the ions are collisional and the electron transpor
3383 © 1998 The American Physical Society
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3384 57MYATT, ROZMUS, BYCHENKOV, AND TIKHONCHUK
nonlocal. In the ion weakly collisional case we present o
analytical expression forS(k,v) which describes the effec
of ion-ion collisions on the position and width of the io
acoustic peaks in the scattered spectrum and we relate th
some experiments reported in the literature@1,2#. We will
also outline the range of parameters in which ion collisio
effects are important and the usual collisionless theory
S(k,v) is inadequate@13#. Our theory ofS(k,v) also pre-
dicts the correct line shape for plasmas with weakly co
sional electrons that are commonly encountered in la
plasma interaction experiments. The height of the
acoustic peaks are determined by the damping of ion ac
tic waves. Since this damping depends on plasma trans
properties, in particular electron thermal conductivity, w
propose that the nonlocality of heat transport may be infer
from the scattered spectra. We assert that these descrip
are correct not only for hydrodynamic fluctuations, but a
for fluctuations whose ratio of wavelength to mean free p
is arbitrary. A comparison of our results with the standa
collisionless cases will also be used in order to justify o
method.

Our paper is organized in the following way. Section
discusses the general theory of fluctuations. Section I
outlines how the general closure problem can be addres
Sec. III B gives the explicit form of the closure, Sec. III
gives the closed set of equations satisfied by the fluctua
hydrodynamic quantities, and Sec. III D uses these in or
to calculate the dynamic form factorS(k,v). Implications
for previous experiments and proposals for the observa
of nonlocal transport are discussed in Secs. IV A and IV
Finally, Sec. V is a summary.

II. THEORY OF FLUCTUATIONS IN PLASMAS

The dynamic form factorS(k,v) determines the cros
section for the Thomson scattering of laser light from t
plasma, wherekW5kW02kW8 and v5v02v8 are the momen-
tum and energy transfer, i.e., the difference in the wave v
tor and frequency between the probe (kW0 ,v0) and scattered
(kW8,v8) electromagnetic waves@13#. For stable plasmas
S(k,v) is well known in two opposite limits. These are th
collisionless limit, given bykla@1, v@na , and the hydro-
dynamic limit in which the opposite is true,kla!1, v
!na .

Historically there have been many differing approach
taken in order to calculateS(k,v). The formalism of fluc-
tuations described by Oberman and Williams@7# is particu-
larly suited to our needs. They have derived kinetic eq
tions for the hierarchy of phase-space fluctuatio

^d f a(xW ,vW ,t)d f a(xW0 ,vW 0 ,t0)&, ^d f a(xW ,vW ,t)d f b(xW 8,vW 8,
t8)d f a(xW0 ,vW 0 ,t0)&, etc., whered f a(xW ,vW ,t) is the difference
between the Klimontovich microdensity

f a~xW ,vW ,t !5(
i 51

Na

d„vW 2vW i~ t !…d„xW2xW i~ t !… ~1!

and its statistical average

d f a~xW ,vW ,t !5 f a~xW ,vW ,t !2^ f a~xW ,vW ,t !&. ~2!
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In all the following we will assume the species labela to
mean both electrons and ions,a5e,i . Starting from the two-
time Liouville equation~as originally done by Rostoker@14#!
and arriving at a linearized form of the Bogoliubov-Bor
Green-Kirkwood-Yvon hierarchy, they derived a key resu
Namely, for stable plasmas the phase-space fluctuation o
a kinetic equation that is the linearization of the usual eq
tion for the single-particle distribution function. For ex
ample, in the collisionless limitd f a obeys the linearized Vla-
sov equation

S ]

]t
1vW •

]

]xW
D d f a2

ea

ma

]^ f a&

]vW
•

]

]xW
df50, ~3!

df~xW ,vW ,t !5(
b

ebE dxW8dvW 8
d f b~xW8,vW 8,t !

uxW2xW8u
. ~4!

This can be solved by a Fourier space and Laplace t
transform with the initial conditiond f a(kW ,vW ,t50). Correla-
tions are then obtained by multiplying the solutio
d f a(kW ,vW ,v) by d f b* (kW ,vW 8,t50) and ensemble averagin
in order to obtain Cab

† (kW ,vW ,vW 8,v)5 ^d f a(kW ,vW ,

v)d f b* (kW ,vW 8,0)& in terms of the initial correlations
Cab

† (kW ,vW ,vW 8,v) is the Laplace transform of the correlatio

function Cab(kW ,vW ,vW 8,t) 5^d f a(kW ,vW ,t)d f b* (kW ,vW 8,0)&,

Cab
† ~kW ,vW ,vW 8,v!5E

0

`

dtexp~ ivt !Cab~kW ,vW ,vW 8,t !. ~5!

The initial conditions for a weakly coupled equilibrium
plasma are given by

^d f a~xW ,vW ,0!d f b~xW 8,vW 8,0!&

5dabd~vW 2vW 8!d~xW2xW 8! f M
a ~v !/na , ~6!

where f M
a (v) is a Maxwellian distribution function,

f M
a ~v !5na /~A2pvTa

!3exp~2v2/2vTa

2 ! ~7!

andvTa
5ATa /ma is the thermal velocity of particles of spe

cies a. Due to the time-reversal symmetry o
Cab(kW ,vW ,vW 8,t) and the fact it is a real quantity, its Fourie
transform can be written in terms ofCab

1 according to

Cab~kW ,vW ,vW 8,v!5E
0

`

dtexp~ ivt !Cab~kW ,vW ,vW 8,t !

1E
2`

0

dtexp~ ivt !Cab~kW ,vW ,vW 8,t !

5Cab
1 ~kW ,vW ,vW 8,v!1@Cab

1 ~kW ,vW ,vW 8,v!#*

52 ReCab
1 ~kW ,vW ,vW 8,v!. ~8!

Cab(kW ,vW ,vW 8,v) @Eq. ~8!# may be used in order to obtai
spectral functions of macroscopic quantities. Of particu
importance is the dynamical form factorS(k,v),



-

v
is

a
y

or
y

tio

y
d

s
a

o

o

of
lso

er-
r-

m
he
ar-
ith
dro-
he
ure.
t
e to
GL

dy-
se;
e
o-

ity
er

ten-
e
o

on-

lt of
the

lly

the
ion

ol-

on

57 3385THOMSON SCATTERING FROM ION ACOUSTIC WAVES . . .
S~kW ,v!5
1

ne
E dvW dvW 8Cee~kW ,vW ,vW 8,v!

52 Re
^dne~kW ,v!dne* ~kW ,0!&

ne
. ~9!

Following Eqs.~3!–~9!, one finds

S~k,v!5
2p

k

u11x i u2Fe~v/k!1Zuxeu2Fi~v/k!

ue~k,v!u2
, ~10!

wheree511(axa , xa is the collisonless form for the par
tial susceptibility of speciesa, and Fa(v/k) are the one-
dimensional distribution functions evaluated at the phase
locity and normalized to unity. Due to its simplicity, th
form of S(k,v) is the most often used in applications~even
when its validity is questionable!. On taking particle dis-
creteness~collisions! into account Eq.~3! is modified by the
addition of a collision term on the right-hand side,

S ]

]t
1vW •

]

]xW
D d f a2

ea

ma

]^ f a&

]vW
•

]

]xW
df

5(
b

C„d f a,^ f b&…1C„^ f a&,d f b
…. ~11!

This is found to be the linearized Balescu-Guernsey-Len
~BGL! collision term, which in turn can be approximated b
the Landau equation and further simplified by using the L
entz operator for electron-ion collisions. In the hydrod
namic regime this equation can be solved by a modifica
of the usual Chapman-Enskog@10# method, resulting in a
system of linear fluid equations for the fluctuating hydrod
namic quantities$dna ,duW a ,dTa%. These may be obtaine
by linearizing the usual Braginskii fluid equations

]na

]t
1

]

]xW
~nauW a!50, ~12!

S ]

]t
1uW a•

]

]xW
D uW a52

1

mana

]

]xW
~naTa!2

1

mana

]

]xW
•ŝa

2
ea

ma

]

]xW
f1

1

mana
RW a , ~13!

S ]

]t
1uW a•

]

]xW
DTa1

2Ta

3

]

]xW
•uW a

52
2

3na

]

]xW
•qW a2

2

3na
ŝa•

]uW a

]xW
1

2

3na
Qa , ~14!

with na→na1dna and so on. The linearization of equation
~12!–~14! together with the linearized closure relations th
relate the fluctuating fluxes$dqW a ,dŝa ,dRW ,dQ% to the forces

$2¹dTa ,dŴ,duW % as a result of the Chapman-Enskog pr
cedure@10# and initial conditions@obtained by taking mo-
ments of Eq.~6!# will form a complete set of equations from
which one can calculate the thermal correlations of any
the hydrodynamic variables, for example,^dnadnb* &/ne .
e-

rd

-
-
n

-

t

-

f

The choice of fluxes~heat fluxdqW a , stressdŝa , friction dRW ,
and heat generationdQ) and the corresponding forces~tem-
perature gradient2¹dTa , rate of straindŴ, and relative
velocity duW ) are those of Braginskii. For a discussion
different choices of hydrodynamic closure relations see a
Balescu@15#.

The fact that fluctuations on a hydrodynamic scale in th
mal equilibrium relax according to the equations of linea
ized hydrodynamics has been known for a long time@16,17#;
however, the derivation from kinetic theory rather than fro
thermodynamics shows the much wider validity of t
method. The linear hydrodynamic fluctuations may be line
ized about a nonequilibrium flow, for example, a state w
heat flux. In summary, the correctness of the reduced hy
dynamic description rests on the validity conditions for t
closure which in this case is the Chapman-Enskog proced
This requireskla!1, na /v!1. If these conditions are no
met, and often they are not, then some alternative closur
the fluid moments must be sought or the linearized B
equation~11! solved by some other means.

III. THEORY OF LOW-FREQUENCY FLUCTUATIONS

A. The closure problem

The Chapman-Enskog method of closure to the hydro
namic moment equations fails in the weakly collisional ca
however, we still wish to retain the fluidlike description. W
are then presented with the problem of closure of the m
ment equations~12!–~14!. This arises because each veloc
moment of the kinetic equations introduces still higher-ord
velocity moments, for example, the heat flux and stress
sor qW a and ŝa , which must be expressed in terms of th
lower-order hydrodynamic moments. We will present tw
methods of closure that together cover a wide range of c
ditions encountered in laser plasmas.

Laser plasmas are quite often nonisothermal as a resu
inverse bremsstrahlung heating that preferentially heats
electronsTe*Ti . The ionization can also be large especia
for heavy elements such as gold,Z@1. Therefore, in many
experiments there exists a separation in scale between
electron and ion collisionalities expressed by the relat
l ei5(ZTe /Ti)

2l i /A2, where l ei and l i are the electron-ion
and ion-ion collisional mean free pathsl ei5vTe

/nei and l i

5vTi /n i . Here we have adopted the usual definition of c
lision frequencies

nei5
4A2pZe4neLe

3AmeTe
3/2

, n i5
4ApZ4e4niL i

3AmiTi
3/2

, ~15!

whereLa are the Coulomb logarithms. Considering an i
acoustic fluctuation in the plasma with a wave vectork and
the separationl ei@ l i we consider the possibilities

kl i ,klei!1 strongly collisional case~Braginskii!,
~16!

kl i!1, klei;1 weakly collisional electrons, ~17!

kl i;1, klei@1 weakly collisional ions, ~18!
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kl i ,klei@1 collisionless case~Vlasov!. ~19!

In the first case~16!, the linearized fluid equations o
Braginskii @10# correctly describe the evolution of the fluc
tuations and ion acoustic damping is determined in term
the classical transport coefficients of thermal conduction
viscosity. In the last case~19!, the collisionless, linearized
Vlasov descriptions of fluctuations is appropriate~3! and
damping is then due to wave-particle resonance~Landau
damping!, which depends on the form of the distributio
function in velocity space at the phase velocity of the wa
These two cases are well known, but as yet the two inter
diate cases are not and have no self-consistent descrip
They are, however, very important because with typicak
vectors and conditions in laser-plasma experiments one
variably finds oneself in either of the two intermediate cas
for example, the experiments of La Fontaineet al. @1,2#.

In order to describe the electron weakly collisonal regi
klei;1 @Eq. ~17!# we will make use of a nonlocal theory o
electron transport that has been developed by Bychen
et al. @12#. This theory is based upon the solution to t
linearized electron Fokker-Planck equation by a Legen
polynomial expansiond f e(k,vW ,v)5( ld f l(v)Pl(cosu). In
this work the authors have been able to express the
Legendre coefficientd f 1 in terms of the hydrodynamic vari
ablesEW * , the effective electric field;Te , the electron tem-
perature; anduW i , the ion velocity in a way reminicent of th
Chapman-Enskog development, but without the restricti
of strong collisions. This has been achieved by the introd
tion of a renormalized collision frequency that includes t
effects of all higher Legendre modes that are negligible
the strongly collisional limit, but necessary in order to d
scribe properly the collisionless limit. This solution ford f 1
is sufficient to achieve the necessary closure asd f 1 is re-
sponsible for transport. For example,d f 1 can be substituted
into the expressions for heat fluxqW e and currentjW. Since the
phase-space fluctuationd f a @Eq. ~2!# obeys the same equa
tions as the perturbation of the distribution function in t
work of Bychenkovet al. @12# we may here interpret thed f a

to be the phase-space fluctuation. We emphasize that
theory has a domain of validity beyond that of classi
transport theory.

In describing the ion weakly collisional case~18! the
usual classical transport for ions is not sufficient. To addr
this problem the analytic method of expansion of the
kinetic equation in tensor Hermite polynomials is used. T
full set of moment equations can be thought of as a rep
sentation of the kinetic equation with closure being achie
by truncation of the hierarchy. A truncation at the 21 m
ment level ~Grad 21M! @15# retaining explicitly the fre-
quency dependence in the ion tensor moment equation
sults in an ion viscosity that is frequency dependent a
hence nonlocal in time. This method has been shown by@11#
to correctly describe ion acoustic wave properties in the li
v@kvTi

. The damping of ion waves is in agreement w

Braginskii in the collisional limitv!n i and also agrees with
Fokker-Planck solutions in the intermediate regime of co
sionalityv*n i for largeZTe /Ti @11#. We will use the above
closures together with the linearization of Eqs.~12!–~14! in
of
d
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order to cover both cases~17! and~18! of weakly collisional
plasmas that are often encountered experimentally@1,2,5,6#.

B. Nonlocal closure

We start by writing the system of linearized mome
equations for the fluctuating hydrodynamical quantit
dna ,duW a ,dTa , obtained from the kinetic equation for th
phase-space particle density fluctuationd f a(xW ,vW ,t) (a5e,i )
as prescribed by Eqs.~12!–~14!. Since ions are predomi
nantly responsible for momentum transport, we write the
momentum equation with the viscous term but neglect
ion thermal transport effect and the electron-ion energy
changedQ→0 in Eq. ~14! as these terms are small in com
parison to momentum transport described by the visco
tensordŝ i , particularly for plasmas withZTe /Ti@1. While
it is the ions that carry the momentum, it is the electrons t
are responsible for the heat transport. We also make appr
mations pertinent to low-frequency fluctuations. We assu
the quasineutral limitdne'Zdni , so that we restrict our-
selves to long-wavelength perturbationsklDe!1, wherelDe
is the electron Debye length:

]dna

]t
1na

]

]xW
•duW a50, ~20!

]duW i

]t
52

Ze

mi
ikWdf2

ikW

mini
~dniTi1dTini !1

1

mini
ikW•dŝ i

1
1

mini
dRie , ~21!

]dTi

]t
1

2

3
Ti ikW•duW i50, ~22!

]dTe

]t
1

2

3ne

]

]xW
•dqW e1

2

3
Te

]

]xW
•duW e50, ~23!

whereduW e5duW i2d jW/ene . The phase-space fluctuationd f e

is solved for in terms of the hydrodynamic momen
duW i ,dne ,dTe and the potentialdf as described in@12#. On
substituting the solution ford f e(kW ,vW ,v) that is dependent on
duW i ,dne ,dTe ,df into the expressions for current, heat flu
and friction, one finds the closure relations

d jW5sdEW * 1a ikWdTe1b jeneduW i , ~24!

dqW e52aTedEW * 2x ikWdTe2bqneTeduW i , ~25!

dRW ie52~12b j !needEW * 1bqneikWdTe2b rmeneneiduW i ,
~26!

wheredEW * 52 ikWdf1 ikW /ene(dneTe1nedTe) is the effec-
tive electric field usually introduced in classical transp
theory @15#. These closure relations are written in Fouri
space as the transport coefficients are allk andv dependent.
In real space the closure relations will become convolut
operators. Since we are concerned with quasineutral fluc
tions the relationd jW50W gives the expression for the heat flu



-

en
i-

l t

h
ity

th

ic
E

ve
a-
e

n-
s

ua

-

n

is
utral

ir
-
les
-
t

en

o-
e of
-
e

n
r-

ons

ion
e

n

n
n

f
the

57 3387THOMSON SCATTERING FROM ION ACOUSTIC WAVES . . .
dqW e52k ikWdTe2bneTeduW i , ~27!

wherek5x2a2Te /s and b5bq2eab j /s. The transport
coefficients in this theory area, the thermocurrent coeffi
cient; x, the thermal conductivity;s, the electrical conduc-
tivity; and the new transport coefficientsbq , b j , andb r that
are related to the ion flow. All the coefficients are depend
on the ionization,Z, k, andv. Rather than tabulate numer
cal values for the coefficients, one of us~J.M.! has made
available upon request a Fortran code that calculates al
necessary transport coefficients.

In order to close the set~20!–~23! all that remains is the
closure for the ion stress tensords i that is valid for the case
~18!. This has been previously derived by Bychenkovet al.
@11# using the frequency-dependent Grad 21M closure. T
Grad 21M closure for the longitudinal part of the viscos
tensor

ds i5
kW•dŝ i•kW

k2
5

4

3

niTi

n i
h̃ i~v!ikW•duW i ~28!

results in a frequency-dependent ion viscosity that has bo
real and an imaginary part

h̃5
in i~v11.46in i !

~v11.20in i !~v11.46in i !10.23n i
2

. ~29!

In previous work@11# that was concerned with ion acoust
damping it has been demonstrated that the real part of
~29! produces the correct damping of ion acoustic wa
with a smooth transition from the strongly collisional Br
ginskii limit g i'0.64k2vTi

2 /n i to the saturated Rukhadz

limit @18#, whereg i'0.8n iTi /ZTe . It also compares well to
the Fokker-Planck simulations of@19,20# in the intermediate
region of collisionality. The imaginary part effects the tra
sition from the adiabatic to the isothermal phase speed av
exceeds the ion-ion collision frequencyn i . We now set out
our generalized version of Onsager’s ‘‘regression of fluct
tions’’ that was outlined in Sec. II using the closuresd jW50
@Eqs. ~24!, ~26!, and ~27!# to the linear hydrodynamic mo
ment equations~20!–~23!.

C. Correlations of the fluctuating hydrodynamic variables

In order to be able to calculate hydrodynamic correlatio
we take the Laplace transform in time of the set~20!–~23!
and the Fourier transform in space,

2 ivdne1neikW•duW 5dne~0!, ~30!

2 ivduW 52
Ze

mi
ikWdf2

ikW

mini
~nidTi1Tidni !1

1

mini
ikW•dŝ i

1
1

mini
dRW ie1duW ~0!, ~31!

2 ivdTe1
2

3ne
ikW•dqW e1

2

3
TeikW•duW 5dTe~0!, ~32!
t

he

e

a

q.
s

-

s

2 ivdTi1
2

3
Ti ikW•duW 5dTi~0!. ~33!

Heredu is the hydrodynamic velocity perturbation which
the same for ions and electrons since we conside quasine
perturbationsd j 50. Equations~30!–~33! describe the evo-
lution of the fluctuating hydrodynamic variables from the
initial values at timet50. This is sufficient for the calcula
tion of the correlations of any of the hydrodynamic variab
by following the prescription outlined in Sec. II. For ex
ample, ^dTedTe* (0)& may be formed by solving the se
~30!–~33! ~with the appropriate closure! for the transformed
dTe in terms of the initial fluctuations, multiplying by
dTe* (0), andthen ensemble averaging. The solution is th
given in terms of the initial correlations that are known~6!.
The initial correlations are simplified as the different hydr
dynamic variables are independent of each other by virtu
the initial condition~6!. The Fourier transform of the corre
lation function ^dTedTe* & is then related to the Laplac
transform by^dTedTe* &52 Re ^dTedTe* (0)&, as explained
in Sec. II, Eq.~8!. We now specialize this to the calculatio
of S(k,v)5^dnedne* &/ne because of its usefulness in dete
mining the cross section for Thomson scattering.

D. Calculation of the dynamic form factor

In solving Eqs.~30!–~33!, we will ignore the time deriva-
tive in the electron heat equation~32! as it is consistent with
our desire to describe isothermal ion acoustic fluctuati
(v;kcs and klei@cs /vTe

), wherecs is the cold ion sound

speedcs5AZTe /mi . Also, in calculatingS(k,v) we can ne-
glect all initial conditions exceptdne(0), since all others are
uncorrelated with the choice of initial conditions~6!. The
condition of zero currentd jW50 @Eq. ~24!# gives an expres-
sion for the fluctuating potential

ikWdf5
ikW

ene
~dneTe1dTene!1

a

s
ikWdTe1

b j

s
eneduW .

~34!

This can be used to eliminate the potential term in the
momentum equation~31! and also in the expression for th
friction dRW ie @Eq. ~26!#,

dRW ie5neS b1
ea

s D ikWdTe1~12b j !b j

e2ne
2

s
duW

2b rmeneneiduW . ~35!

With the closure~27! for the electron heat flux, the electro
temperature equation~32! can be solved fordTe ,

dTe52
neTe

k2k
~12b!ikW•duW . ~36!

On substituting Eqs.~34!–~36! together with the expressio
~29! for the ion viscosity and ion temperature into the io
momentum equation~31! and after using the continuity
equation~31! in order to express the velocity in terms o
density, the density perturbation is expressed in terms of
initial perturbation
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dne~k,v!5
idne~0!

vD~k,v!
where D512

k2~cs
21vTi

2 !

v~v2D12iga!
.

~37!

HereD is the dispersion equation for ion acoustic waves

ga5
necs

2~12b!2

2k
1

nee
2cs

2

2sTe
b j

21b rnei

cs
2

2vTe

2
1g i ~38!

is the damping rate with the ion viscous contribution,

g i5
2

3

k2vTi

2

n i
Re h̃5k2vTi

2
n i~1.49n i

210.80v2!

v414.05n i
2v212.33n i

4
,

~39!

and

D5
2

3

k2vTi

2

v
1

4

3

k2vTi

2

n i
Im h̃ ~40!

accounts for ion contribution to the acoustic wave dispers
due to ion viscosity and heating. Using Eq.~37! we can
expresŝ dnedne* (0)&/ne in terms of the initial correlations
as given by Eq.~6!, ^dne(0)dne* (0)&/ne51. From the rela-
tion S(k,v)52 Rê dnedne* (0)&/ne the dynamic form factor
is determined

S~k,v!5
4k2~cs

21vTi

2 !ga

~v22k2vs
2!214v2ga

2
, ~41!

where we have introduced the definitions

vs5Acs
21G ivTi

2 , G i5
5

3
1

4

3

v

n i
Im h̃

5
9v4129.7v2n i

2111.7n i
4

3~v414.05v2n i
212.33n i

4!
~42!

for the ion acoustic group velocity and ion specific heat ra

IV. APPLICATIONS

A. Application of the nonlocal theory in the limit
of collisional electrons

There are two main issues that can be addressed con
ing the application of our theory for the ion acoustic featu
in the Thomson scattered spectrum in this regime~17!. The
first is ion acoustic damping, which determines the heigh
the ion acoustic peaks. In the intermediate regime of c
lisonality klei;1 the electron contribution to ion acoust
damping has been investigated both theoretically@21# and
numerically@22#, as it is important for stimulated scatterin
processes. The damping may be calculated from the th
comprising Eqs.~20!–~22! and ~24!–~27! for the wave-
lengthsklei@cs /vTe

, kl i!1,
n

.

rn-
e

f
l-

ry

ga5
necs

2

2 F ~12b!2

k
1

e2b j
2

Tes
1

b r

nevTe
l ei

G10.64
k2vTi

2

n i
,

~43!

and this compares well with the numerical solution to t
Fokker-Planck kinetic equation@22# and the analytic theory
@21#. It has the proper hydrodynamic form in the lon
wavelength limitklei!1 and takes the form of collisionles
electron Landau damping in the short-wavelength reg
klei@1. Figure 1 shows the damping as a function of ele
tron collisonalityklei as predicted by Eq.~43!. It is interest-
ing to note that the deviation from classical Braginskii theo
occurs early, while the wavelength is still hundreds of tim
larger than a mean free path. This will be reflected inS(k,v)
@Eq. ~41!#, whose form may be interpreted with the aid
Fig. 1.

The other issue is concerned with transport. The para
eters of many laser-plasma experiments fall in the regime
nonlocal transport as is demonstrated in Fig. 2 for the cas
a high-Z plasma. Since the line shape or height of the i
acoustic peaks described by Eq.~41! is expressed in terms o
transport coefficients, Thomson scattering may be used
probe for this nonlocality. The probedk vector in the plasma
is determined byk52k0sin(u/2), wherek0 is the wave vec-
tor of the incident probe beam andu is the scattering angle
chosen by the experimentalist. We propose a comparison
tween the spectrum for two~or more! different scattering
angles. In this way thek dependence of the transport coef
cients may be inferred. In choosing experimental paramet
Z should be sizable for the validity of the nonlocal transp
theory @12#. In Fig. 2 there are three lines that identifya
51/klDe and the contours show electron-ion collisonalit
Figures 3 and 4 show a comparison between the spec
predicted by Eq.~41! and collisionless theory~10! for differ-
ent scattering angles. In particular Fig. 4 shows how the
fect of collisions alters thek dependence of the peak heig
from that expected from collisonless theory where fluctu
tions are only Landau damped. These parameters have
chosen to be close to those encountered experimentally

FIG. 1. Electron part of ion acoustic dampingg/kcs as a func-
tion of electron collisionalityklei . The gray curve 1 shows the
prediction of fluid theory with classical thermal conductivity. Th
black lines show the damping from the analytic theory of@12# for
Z58 ~curve 2! andZ564 ~curve 3!.
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example, a gold plasma with the conditionsne50.531021

cm23, Te51 keV, Ti5500 eV, andZ550 and a 0.35-mm
probe. Figure 5 shows a more collisional regime due to
use of a longer-wavelength probe, which is compared to B
ginskii theory. In this case the effect of changing the an
from 10° to 180° changes the collisionality of the probed i
acoustic fluctuation fromklei;0.01 ~where classical trans
port just starts to break down! to klei;0.1 ~classical trans-
port inadequate!. This is an interesting regime as the ma
contribution in Eq.~41! to the scattering then comes fromk,
the electron thermal conductivity. Investigation of the sp

FIG. 2. Parameter regime for gold plasma. The contour p
shows electron-ion collisionalityklei for scattering angles of 90°
and 10°. The first number in the parentheses corresponds to 90
the second to 10° for a 0.35-mm probe beam. Also shown isa
51/klDe again for 90° and 10° scattering. The box shows
plasma parameters of Figs. 3 and 4.

FIG. 3. Dynamic form factorS(k,v) for a weakly collisional
gold plasma,ne50.531021 cm23, Te51 keV, Ti50.5 keV, and
Z555 for a 0.35-mm probe and different scattering angles. Gray
collisionless theory, black is nonlocal theory.
e
a-
e

-

tra in this regime could be used to test models of nonlo
thermal conductivity.

B. Application of the theory in the limit
of collisonless electrons

In this regime of collsionless electronsklei@1 and semi-
collisional ionskl i;1 the dampingga @Eq. ~38!# takes the
form

ga5Ap

8

cs

vTe

kvs1
2

3

k2vTi

2

n i
Re h̃ , ~44!

t

nd

FIG. 4. Dynamic factorvsS(k,v) normalized by the ion acous
tic frequencyvs for a gold plasma,ne50.531021 cm23, Te51
keV, Ti50.5 keV, andZ555 for a 0.35-mm probe. This figure
illustrates the difference between the Vlasov theory~curve 1! and
the nonlocal theory~curve 2! for the scattering angles of 10° an
180°. Gray is collisionless theory, black is nonlocal theory.

FIG. 5. Dynamic form factorS(k,v) for a more collisonal gold
plasma,ne5231021 cm23, Te51 keV, Ti50.5 keV, andZ555
for a 10.6-mm probe. The figure showsS(k,v) at angles of 10°
~left! and 180°~right! and demonstrates the departure from class
hydrodynamics. Gray is Braginskii fluid equations with classic
heat conductivity, black is nonlocal theory.
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which will be appropriate for discussing the experime
@1,2#. The fluctuation spectrum~41! does not account for the
entropy mode since we have neglected the ion thermal c
ductivity (v@kvTi

). To assess this formula~41! we will
compare the predictions to those of the collisionless the
for plasma parameters similar to those of the experiment
to La Fontaineet al. @2#. We define the range of plasm
parameters for which ion-ion collisions can be important
determining the fluctuation spectra. Figure 6 shows the
damping of ion acoustic waves as a function of ion-ion c
lisionality from Ref.@11#. Note that the effect of ion Landa
damping, which is missing in Eqs.~39! and ~44!, has been
added phenomenologically in Fig. 6 according to@11#. For
plasmas withZTe /Ti.40 we have the situation where a
though the ion damping differs from the collisionless lim
the ion contribution is much less than that due to the e
trons ~electron Landau damping!. We therefore identify the
interesting range of parameters to be given by 8&ZTe /Ti
&40. As an example, forZTe /Ti516 the ion damping is a
few times smaller than the electron contribution in the co
sionless limit, but with the addition of ion-ion collisions
becomes~for kl i;0.2) a few times larger than the electro
~Landau damping! contribution; see Fig. 6. Ion acoust
waves will be more strongly damped in this regime than
collisionless theory would predict. This range of paramet
has relevance to several recent experiments@1,2,23,6#.

In the experiments of La Fontaineet al. @1,2#, a difficulty
is expressed in fitting the width of the observed spectra to
collisionless theory~10! ~see also@24#!. They note that this is
possibly due to the effects of ion-ion collisions and point o
the need for further investigation. We address this situa
for the plasma conditions of their experiment. Two cas
considered are for carbon plasmas, in the firstZTe /Ti is ;12
and in the latter;8.6. The authors obtainTi from the width
of the peaks, as in the collisionless limit this is due to i
Landau damping. However, in this experiment the ions
not collisionlesskl i;1 and our ion acoustic peaks are twi
as broad for the sameTi . A comparison of our spectra an

FIG. 6. Dependence ofg i /kvTi
, the normalized ion part of ion

acoustic damping, on ion collisionalitykl i . This damping includes
an ion Landau damping contribution in addition to collisions. The
are six curves~1–6! plotted for the temperature ratiosZTe /Ti of 4,
8, 16, 48, 64, and 80, respectively. The dashed curve shows
electron Landau damping contribution for the caseZTe /Ti516 and
shows how the importance of the ions depends strongly on the
collisionality.
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the collisionless spectra appears in Figs. 7 and 8. The aut
correctly point out that ion collisions can broaden the i
acoustic peaks. In addition, however, ion collisions mod
the specific-heat ratio and alter the phase speed of the
acoustic mode. The phase speedvs'csA113Ti /ZTe in the
collisionless limit, where the coefficient 3 corresponds to
isothermal specific-heat ratio for ions. The effect of col
sions is to reduce this coefficient towards 5/3@23#. This ef-
fect is not large~a few percent!, but it adds more error to the
inferred electron temperatures~cf. Fig. 8!.

V. SUMMARY

The importance and range of applicability of Thoms
scattering as a plasma diagnostic technique depends on
accuracy of the theoretical model of fluctuations and scat

he

n

FIG. 7. Ion acoustic peaks as predicted from Eq.~41! ~black
lines! and from collisionless theory~gray lines! for a carbon
plasma,ZTe /Ti512.

FIG. 8. Closeup of the ion acoustic peaks for the parameter
Fig. 7. The gray line corresponds to the prediction of collisionle
theory and the black line to Eq.~41!.
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57 3391THOMSON SCATTERING FROM ION ACOUSTIC WAVES . . .
ing cross section. We have described a theory for the
namical form factorS(k,v), which is valid for arbitrary par-
ticle collisionality in plasmas with largeZ andZTe /Ti . Our
theory properly describes the ion acoustic resonance in
entire region of parameters between collision dominated
drodynamics and the collisionless formulation based on
Vlasov description. This has been achieved using gene
ized nonlocal hydrodynamics@11,12,21# for the fluctuating
variables.

The starting point has been an exact result of fluctua
theory @7# that demonstrates that the two-point correlati
function of the phase-space fluctuation satisfies the usua
earized kinetic equation with the Landau collision operat
We have solved this equation and reduced the problem
finding fluctuations of the phase-space densities to the s
tion of the linear generalized hydrodynamical equations
the fluctuating hydrodynamical variables. The closure le
ing to the hydrodynamical model has been achieved with
help of frequency-dependent ion transport coefficients@11#
and the full set of nonlocal electron transport coefficie
@12#. This derivation involves the frequency-dependent G
21-moment approximation for the ion fluctuations and a g
eralized Laguerre expansion of the electron fluctuation d
sity. Calculations of the dynamical form factorS(k,v) are
completed assuming an equilibrium electron density corr
tion function at the initial moment in time.
.
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Starting from our general theory of the dynamic form fa
tor, we have analyzed in detail two different regimes of i
acoustic fluctuations with weakly collisional electrons a
cold ions kl i!1, klei;1 and with weakly collisional ions
and collisionless electronskl i;1, klei@1. Equation ~41!
provides an expression for the dynamical form factor in
first limit of weakly collisional electrons. Thek-dependent
transport coefficients are calculated by a Fortran code tha
available from us. The ion acoustic resonance line shape
culated from Eq.~41! has been used to demonstrate the eff
of nonlocal inhibited electron thermal transport. The pos
bility of directly inferring electron thermal transport prope
ties from Thomson scattering measurements is proposed
realistic experimental parameters. Equations~41! and ~44!
give an expression forS(k,v) in the regime of weak ion
collisionality and for collisionless electrons. This is the r
gime of parameters often encountered in x-ray lasers plas
@1,2#, where our theory predicts variations of the Thoms
scattering cross section that are consistent with experime
observations.
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